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A Amazônia é o ‘Tesouro da Terra’ que vem 
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Amazônia é a ‘Casa da Vida’ que sustenta a 
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RESUMO 

BUORO, M.  Estimativa do potencial de sequestro de carbono em Reserva Particular do 

Patrimônio Natural do Bioma Amazônia por meio de Redes Neurais Convolucionais.   

2022.  52 f.  Trabalho de conclusão de curso (MBA em Inteligência Artificial e Big Data) – 

Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 

2022. 

 

Devido às mudanças ambientais e climáticas causadas pela redução de áreas florestais, é 

crescente a necessidade de instrumentos de aferição, que possibilitem a análise dos biomas e 

sua capacidade de captura de carbono (CO2) da atmosfera. Existem atualmente técnicas de 

análise de biomas, entretanto poucas fazem uso simultâneo de imagens de satélites e métodos 

de inteligência artificial. O presente trabalho pretende estimar o potencial de sequestro de 

carbono por reflorestamento no Bioma Amazônia, levando em consideração características 

fitossociológicas e de imagens. A área compreende a Reserva Particular de Patrimônio Natural 

Dr. Daisaku Ikeda que possui 52 hectares. No período entre 2020 e 2025, dez mil mudas estão 

sendo e serão plantadas. Espera-se que esse plantio contribua com a neutralização de 

aproximadamente 1,6 mil toneladas de Carbono (CO2). As mudas estão distribuídas entre mais 

de 50 espécies nativas e são georreferenciadas. Estudos indicam que as árvores tropicais 

sequestram 312 Kg de CO2 ao longo de 20 anos, ou seu tempo de crescimento. Portanto a 

contribuição pretendida neste trabalho é o desenvolvimento e a validação de um instrumento 

de análise e medidas de capturas de carbono através de imagens de frações florestais. 

 

Palavras-chave: Sequestro de carbono; Redes neurais convolucionais; Sensoriamento remoto. 

  



 
 

ABSTRACT 

BUORO, M.  Estimation of the carbon capture potential in a Private Reserve of Natural 

Heritage of the Amazon Biome through Convolutional Neural Networks.   2022. 52 f. 

Trabalho de conclusão de curso (MBA em Inteligência Artificial e Big Data) – Instituto de 

Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2020. 

 

Due to the environmental and climate changes caused by the reduction of forested areas, there 

is a growing need for measuring instruments that allow for the analysis of biomes and their 

capacity to capture carbon (CO2) from the atmosphere. Although there are currently biome 

analysis techniques, few use simultaneously satellite images and artificial intelligence methods. 

The present work intends to estimate the potential for carbon capture by reforestation in the 

Amazon Biome, considering phytosociological and imaging characteristics. The area comprises 

the Dr. Daisaku Ikeda Private Natural Heritage Reserve, which has 52 hectares. Between 2020 

and 2025, ten thousand seedlings are being and will be planted. It is expected that this planting 

will contribute to the neutralization of approximately 1.6 thousand tons of carbon (CO2). The 

seedlings are distributed among more than 50 native species and are georeferenced. Studies 

indicate that tropical trees sequester 312 kg of CO2 over 20 years, i.e., their growing time. 

Therefore, the intended contribution in this work is the development and validation of an 

instrument for analyzing and measuring carbon capture through images of forest fractions. 

 

Keywords: Carbon capture; Convolutional Neural network; Remote sensing.  
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1 INTRODUÇÃO 

 

Observa-se que as referências existentes sobre o tema, mesmo as utilizadas para o 

Bioma Amazônia são provenientes de estudos de outros biomas, como por exemplo a Mata 

Atlântica. RODRÍGUEZ (2015), cita em seu trabalho sobre as referências de estudos anteriores, 

que por causa da influência que a localização geográfica e a composição florística têm na taxa 

de sequestro de carbono, foram levantados alguns estudos com valores para captura de CO2 

por reflorestamento na região da Mata Atlântica próximo ao Estado do Rio de Janeiro, São 

Paulo ou semelhante, utilizando espécies nativas. Segundo o autor, os valores do Painel 

Intergovernamental para Mudanças Climáticas - IPCC, para a taxa de captura de carbono em 

florestas tropicais naturais da América do Sul é subdividido por período, sendo considerada 

uma taxa para áreas de até 20 anos e outra para áreas em que o plantio florestal possui mais de 

20 anos. Assim para o primeiro período a taxa calculada a partir dos parâmetros determinados 

é de 7,0829 tC/ha/ano ou 25,9942 tCO2/ha/ano; já para o segundo período, esta taxa é de 1,9960 

tC/ha/ano ou 7,3253 tCO2/ha/ano. Assim, considerando qualquer projeto a ser desenvolvido 

que dure 20 anos, seriam capturados cerca de 519.884 tCO2/ha (RODRÍGUEZ, 2015). Os 

relatórios do IPCC, assim como outros estudos da área, recomendam que sejam desenvolvidos 

valores mais específicos por região a ser analisada. Dessa forma, a motivação de realizar a 

presente pesquisa, está em fazer uso de ferramentas de Inteligência Artificial para contribuir 

com uma melhor compreensão do comportamento típico do Bioma Amazônia onde devido ao 

clima e outras particularidades, as árvores crescem e florescem mais rapidamente e prestam um 

serviço melhor à natureza que em qualquer outra região. No Instituto Soka Amazônia, foco 

dessa pesquisa, no período entre 2020 e 2025, dez mil mudas de espécies nativas estão sendo 

plantadas. Espera-se que esse plantio contribua com a neutralização de aproximadamente 1,6 

mil toneladas de Carbono (CO2). As mudas estão distribuídas entre mais de 50 espécies nativas 

e são georreferenciadas. Estudos indicam que as árvores tropicais sequestram 312 Kg de CO2 

ao longo de 20 anos, ou seu tempo de crescimento. Espera-se que a presente pesquisa, possa 

contribuir também com esse objetivo do Instituto. A pesquisa propõe a rotulação de um 

conjunto relativamente pequeno de indivíduos arbóreos e que o algoritmo aprenda a caracterizar 

estes elementos, sendo capaz de identificar padrões de acordo com características 

fitossociológicas e de imagens. Para o escopo desse trabalho, utiliza-se a metodologia de 

cálculo do IPCC (2006). 
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2 REVISÃO BIBLIOGRÁFICA 

 

 Este capítulo se inicia descrevendo de forma sucinta, a combinação a partir dos dados 

de inventário florestal com uma equação alométrica adequada para a região de estudo, como 

forma de estimar a quantidade de carbono em um reflorestamento. Além da alometria, 

metodologias para o cálculo do sequestro de carbono, como as metodologias do INPE e do 

IPCC, são abordadas. É apresentado o uso de software especializado que faz a combinação de 

imagens com uma tabela de parâmetros para estimar o potencial de sequestro de carbono. São 

trazidos casos com aplicação de Inteligência Artificial para uso florestal, utilizando algoritmos 

como Random Forest e casos em que foram treinadas redes neurais como classificadores. A 

aprendizagem profunda que tem sido utilizada com sucesso em aplicações comerciais desde os 

anos 90 e sua evolução, como as EfficientNets. Descreve as redes convolucionais, integrando-

se à Aprendizagem Profunda, e que têm sido extremamente bem-sucedidas em aplicações 

práticas.  O capítulo também traz o uso das técnicas de sensoriamento remoto, seja com imagens 

de satélite como alternativa à extensão territorial da região, dificuldades de acesso e custos 

elevados para realização de trabalhos de campo ou uso de sensoriamento remoto ativo de 

altíssima resolução. Abrange ainda os índices de vegetação, respectivamente o CO2Flux, 

desenvolvido com objetivo de mensurar o estoque de carbono em vegetação natural e o 

mapeamento da vegetação utilizando o NDVI, que permite estimar a biomassa da vegetação e 

consequentemente relacioná-la ao estoque de carbono.  

 

2.1 Inventário florestal 

 

Segundo RODRÍGUEZ (2015), um fator fundamental para o sucesso dos plantios, 

consiste na escolha das espécies mais apropriadas a serem utilizadas. Uma vez em poder da 

lista de espécies nativas que constituem a composição florística original da região, o passo 

seguinte é estabelecer a composição florística de um hectare de reflorestamento. A metodologia 

proposta para a determinação da quantidade de carbono em um reflorestamento de mata ciliar 

é: instalar um número significativo de parcelas amostrais fixos nos remanescentes de mata ciliar 

da região de estudo. As amostras devem ser georreferenciadas com auxílio de um GPS. Dentro 

de cada amostra, todas as árvores com Circunferência à altura do peito – CAP maior que 15 cm 

devem ser identificadas por espécie e classe de diâmetro e ter sua circunferência medida. A 

partir desses dados é possível determinar para cada amostra o número médio de indivíduos e o 
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CAP médio para cada espécie dentro de cada uma das categorias de diâmetro. Esses dados 

devem ser combinados com uma equação alométrica adequada para a região de estudo. 

Seguindo esse roteiro é possível estimar a quantidade de carbono que será fixado em um 

reflorestamento dentro dos parâmetros considerados neste estudo (RODRÍGUEZ, 2015).  

Em termos gerais, a alometria pode ser definida como a relação entre variáveis de 

tamanho de um organismo. A alometria pode ser considerada como o estudo do crescimento de 

uma parte do organismo em relação ao todo, como o estudo das consequências do tamanho na 

forma do organismo, ou ainda, como a propriedade que têm certos objetos de conservarem sua 

geometria e forma enquanto eles variam de tamanho. A relação mais utilizada em alometria de 

plantas é aquela entre o diâmetro do tronco e a altura total da árvore. Métodos e técnicas para 

medir reservatórios de carbono em projetos florestais são de uso corrente, baseados em 

princípios comuns dos inventários florestais, amostras de solo e análises ecológicas. Inventários 

utilizam em geral amostras de tamanho fixo e permanentes, através da análise dessas amostras, 

todos os reservatórios de carbono de uma floresta podem ser medidos ou estimados. O erro total 

na medida de um reservatório de carbono é em função do erro na amostragem (número de 

amostras utilizadas para representar uma população de interesse), erros de medida (erro durante 

a medida do CAP) e erros de regressão (conversão do CAP da árvore em massa de biomassa 

utilizando equações alométricas). O erro de amostragem é, em geral, a maior fonte de erro 

(MARTINS, 2004).     

 

2.2 Sequestro de carbono 

 

De acordo com MARTINS (2004), para a biomassa viva, diâmetros de uma amostra de 

árvores são medidos e convertidos em estimativas de peso de biomassa utilizando-se equações 

de regressão alométricas. A relação mais utilizada em alometria de plantas é aquela entre o 

diâmetro do tronco e a altura total da árvore. Para a elaboração de um projeto de sequestro de 

carbono, é preferível que a estimativa do potencial seja subestimada a superestimada, o que 

seria um fator de desconfiança de um projeto. O mesmo ocorre com as árvores com CAP 

inferior à 15 cm, já que praticamente todas as equações alométricas que estão disponíveis não 

são válidas para árvores com esse padrão de CAP (MARTINS, 2004).   

A metodologia do Instituto Nacional de Pesquisas Espaciais – INPE (2009) 

desenvolvida no projeto Mata Nativa, diz que não é simples utilizar um fator equivalente para 

realizar o cálculo de sequestro de carbono por árvore. A razão é que a dinâmica de crescimento 

de uma floresta não é linear e, portanto, a absorção de carbono também é irregular, além do 
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que, não é possível saber se todas as árvores vão sobreviver caso fossem plantadas. Por essa 

razão, assume-se que a plantação cresce a um ritmo constante, ou seja, que a taxa de 

crescimento da massa das árvores usada para o cálculo é constante durante o tempo e equivale 

ao crescimento durante os primeiros 20 anos. (ORDOÑEZ, 2014; RODRÍGUEZ, 2015). Desta 

maneira, Mata Nativa, que se desenvolve em uma área de 25,3 hectares no INPE de Cachoeira 

Paulista, os dados necessários para o cálculo do sequestro de carbono de uma plantação de 

árvores são a densidade da madeira (pm), o teor de carbono (tc) e a velocidade de crescimento 

da massa das árvores por unidade e área (mha); com isso pode-se calcular o fator sequestro de 

carbono anual médio por hectare de plantação (S) conforme ilustrado na equação (2.1). A 

constante k representa a constante estequiométrica para fixar o carbono do CO2 atmosférico e 

tem um valor de 44/12.  

𝑆 = 𝑚ℎ𝑎 ∗ 𝜌𝑚 ∗ 𝑡𝑐 ∗ 𝑘  (2.1) 

Na metodologia do Painel Intergovernamental sobre Mudanças Climáticas - IPCC 

(2006), a taxa de captura de carbono em florestas tropicais naturais da América do Sul é 

subdividida por período, sendo considerada uma taxa para áreas de até 20 anos e outra para 

áreas em que o plantio florestal possui mais de 20 anos. Assim para o primeiro período a taxa 

calculada a partir dos parâmetros determinados é de 7,0829 tC/ha/ano ou 25,9942 tCO2/ha/ano; 

já para o segundo período, esta taxa é de 1,9960 tC/ha/ano ou 7,3253 tCO2/ha/ano.  

O IPCC foi fundado em 1988 no âmbito da Organização das Nações Unidas – ONU, 

para fornecer aos líderes políticos avaliações periódicas das bases científicas das mudanças 

climáticas, seus impactos e riscos futuros, e opções em forma de adaptações e mitigações. Em 

2006, a organização publicou um guia fornecendo metodologias para estimar inventários 

nacionais de emissões antropogênicas e sequestros de Gases do Efeito Estufa - GEE. O método 

utilizado pelo IPCC é oficial, além que considera a contabilização da parte aérea e raiz, ou seja, 

a de carbono na biomassa aérea e abaixo do solo, também porque considera um horizonte de 

tempo de 20 anos e de mais de 20 anos, e não assume como linear a velocidade de crescimento 

da árvore, portanto, o fator sequestro de carbono é mais próximo da realidade. Para a realização 

deste cálculo basta multiplicar o fator de sequestro de carbono pela área da reserva e multiplicar 

pelo horizonte de tempo, conforme ilustrado na equação (2.2), onde FSC= Fator de sequestro 

de carbono (25,9942 tCO2/ha/20anos). 

𝑆 = 𝐹𝑆𝐶 𝑥 Á𝑟𝑒𝑎 da reserva 𝑥 horizonte de tempo (2.2) 
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De acordo com os cálculos do IPCC, cada árvore de clima tropical sequestra 312kg de 

CO2 até chegar aos 20 anos de vida. Isso corresponde a uma captação de aproximadamente 

16kg de CO2 a cada ano. Depois desses 20 anos, continua captando aproximadamente 6 kg a 

cada ano restante de sua vida.  “Muitas pessoas pensam que é necessário esperar os 20 anos que 

a planta leva para atingir seu ápice para que comece a captar carbono da atmosfera. Mas, a 

planta já começa a fazer isso desde que a semente germina.” (INSTITUTO SOKA 

AMAZÔNIA, 2021b).  

 

2.3 Uso de software especializado 

 

Se tratando de estimar o potencial de sequestro de carbono através da combinação de 

imagens com uma tabela de parâmetros, foi encontrado na literatura o uso de um software 

chamado inVEST - Integrated Valuation of Ecosystem Services and Tradeoffs da Stanford 

University que possui um módulo Carbon Storage and Sequestration. Segundo Tallis (2013), 

o módulo possui algumas limitações: O modelo simplifica bastante o ciclo de carbono, 

assumindo que nenhum uso e ocupação do solo (LULC) existente na paisagem ganha ou perde 

carbono ao longo do tempo. O modelo depende das estimativas do carbono sequestrado para 

cada classe de LULC cujos resultados serão tão detalhados quanto a classificação usada para as 

classes LULC o permitir. Uma vez que o sequestro de carbono pode variar não só entre classes 

LULC mas também dentro de cada classe de LULC, uma classificação menos detalhada poderá 

gerar resultados menos precisos. O modelo não contabiliza o carbono que se “move” de um 

pool para outro, ou seja, o modelo assume que o carbono que possa mover-se do pool “acima 

do solo” para o “solo” através da decomposição da folhada que cai da árvore, é automaticamente 

liberado para a atmosfera. Por fim, o modelo para a valoração econômica considera que o 

armazenamento de carbono ao longo do tempo assume um padrão linear em vez de um padrão 

não linear, não refletindo de fato que a taxa de sequestro é maior nos primeiros anos e baixa 

nos anos seguintes. Uma vez que assume uma taxa de variação constante, o modelo tende a 

sobrevalorizar o carbono sequestrado. 

O funcionamento do módulo Carbon Storage and Sequestration utiliza como requisitos 

(inputs) mapas de classes de uso e ocupação do solo (LULC) em formato matricial (raster) e 

tabelas de coeficientes que relacionam o armazenamento de carbono com cada classe de uso e 

ocupação do solo do mapa. A quantidade de carbono armazenado em cada classe de uso e 

ocupação do solo (LULC) depende maioritariamente da dimensão dos quatro reservatórios 

(pools), respectivamente, acima do solo, abaixo do solo, matéria orgânica em decomposição e 
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o próprio solo (matéria orgânica morta), uma vez que o cálculo feito pelo modelo tem por base 

a quantidade de carbono armazenado numa determinada classe de uso e ocupação do solo e a 

área que essa classe representa na paisagem. O cálculo do carbono armazenado consiste na 

soma do carbono armazenado nos diferentes pools de carbono (acima do solo: casca dos 

troncos, folhas; abaixo do solo: todas as raízes; matéria orgânica em decomposição (o maior 

reservatório de carbono terrestre) e solo (matéria orgânica morta) para cada classe de ocupação 

do solo, obtendo-se o carbono armazenado em cada classe e/ou o carbono armazenado em toda 

a paisagem. A modelação do sequestro de carbono é feita em função da variação de classes de 

ocupação e uso do solo ao longo do tempo. No entanto, a estimativa para a variação do carbono 

armazenado ao longo do tempo só é possível caso exista um mapa/cenário futuro, uma vez que 

o cálculo do sequestro é feito em dois momentos no tempo, calculando a diferença de 

armazenamento entre os dois casos em cada unidade do mapa. Os outputs gerados pelo modelo 

são mapas do carbono armazenado (toneladas de carbono/pixel); carbono sequestrado 

(toneladas de carbono/pixel); valor atual do carbono sequestrado (unidade monetária/pixel).  

O inVEST segue o modelo de inventário IPCC para atribuir valores de armazenamento 

de carbono por classes de cobertura do solo. O carbono armazenado é a soma dos quatro 

reservatórios. O sequestro de carbono é a diferença do armazenamento em um certo ponto e o 

armazenamento em um ponto anterior no tempo. O modelo requer duas entradas, a primeira é 

um mapa de uso da terra e o segundo é uma tabela biofísica, com valores de armazenamento de 

carbono para cada classe de cobertura de linha de uso da terra. Opcionalmente, se desejar 

calcular o sequestro de carbono, precisa de uma classe de cobertura de uso da terra para outro 

ponto no tempo. Sobre os resultados do modelo, de acordo com o autor, o mais importante é o 

mapa do carbono armazenado na paisagem. Será obtido um mapa para cada ponto no tempo. 

Se for mais de um, obterá o mapa de sequestro de carbono. Mesmo com as limitações, esse 

modelo é muito utilizado para estimar de maneira rápida carbono armazenado e carbono 

sequestrado em uma paisagem. É muito utilizado por ser o método IPCC, ser fácil de executar 

e não precisar de muitos dados, mas o resultado pode não ser um reflexo real da realidade 

(Invest Carbon Model, 2020). 

2.4 Uso de aprendizado de máquina 

 

De acordo com MOREIRA et al. (2021), a aplicação de Inteligência Artificial para uso 

florestal, tem sido utilizada entre outros, no monitoramento e no combate a incêndios, 

planejamento, otimização florestal e sensoriamento remoto. Os autores citam exemplos 
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utilizando Lógica Fuzzy em Sistemas de Informação Geográfica – SIG com as vantagens de 

permitir avaliar problemas complexos de forma prática, ser compreensível, permitir 

flexibilidade na combinação de mapas e de ser facilmente implementada.   

Outra técnica de aprendizado de máquina utilizada, é a Random Forest, devido à 

robustez do algoritmo, facilidade de parametrização e métricas internas. Além disso, Random 

Forest está se tornando amplamente utilizada para predição espacial, estimativa de biomassa 

acima do solo, relação entre produtividade da floresta e os fatores de povoamento e clima, 

dentre outras (MOREIRA, T. et. al., 2021). 

Estudos recentes utilizando aprendizado de máquina no contexto florestal também 

foram realizados por MIRANDA e AGUIAR (2021). Os autores avaliaram um modelo de 

suscetibilidade a deslizamentos de terra na área de Longhai na China, a partir de um banco de 

dados de mapas de inventários de deslizamento de terra com 93 locais e dados espaciais de 14 

fatores condicionantes. Entre os métodos analisados, Random Forest se mostrou o mais 

eficiente, com curva característica de operação - AUROC (0,869), erro padrão (0,025), intervalo 

de confiança de 95%, maior valor de precisão (0,774), maior recall (0,662) e maior medida F 

(0,662) para o conjunto de dados de treinamento. Outro caso citado pelos autores ocorreu em 

Kenthii na Mongólia, com avaliação da regeneração florestal natural. Nesse experimento, o 

banco de dados foi compilado no campo através de medições de dados coletados como variáveis 

fatores de vegetação heterogênea, pressão de pastagem e fatores ambientais de 120 parcelas 

dispostas em 6 locais. Os dados foram centralizados, padronizados, verificou-se outliers, 

transformados com assimetria e análises multivariadas foram implementadas para ordenar os 

dados. Após testes de correlação linear e classificação foram testados os algoritmos de 

classificação Random Forest. Um terceiro estudo, trata da avaliação de desempenho de métodos 

de aprendizagem de máquina para previsão de incêndios florestais no Parque Nacional Pu Mat, 

no Vietnã. A aplicação de métodos como Bayes Network (BN), Naive Bayes (NV), Árvore de 

Decisão (DT) e Regressão Logística Multivariada (MLP) para a previsão e mapeamento da 

suscetibilidade de incêndio em todo o Parque, foram robustos em resposta à mudança de 

treinamento e validação do conjunto de dados.  (MIRANDA E AGUIAR, 2021). 

 

2.5 Uso de redes neurais artificiais 

 

Classificação de estratos florestais utilizando redes neurais artificiais podem ser 

encontrados em GONÇALVES et al. (2016), utilizando dados provenientes de um inventário 

florestal do Instituto de Desenvolvimento Florestal do Estado do Pará – IDEFLOR BIO, de 
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uma área de 600 mil hectares e imagens de satélite escolhidas seguindo o critério de 

compatibilidade entre a data da imagem e a data de execução do inventário, com o objetivo de 

minimizar as variações temporais nas tipologias florestais. Foram treinadas redes neurais como 

classificadores de dois tipos florestais e avaliadas usando os indicadores matriz de confusão, 

cálculo de acurácia global, coeficiente Kappa e o gráfico de características do receptor 

operacional (ROC), sendo o melhor resultado obtido por meio da rede neural probabilística de 

função de base radial (RBF) newpnn, evidenciando a aplicação dessa metodologia na análise 

de áreas com potencial para prestar serviços ecossistêmicos. Chagas et al. (2009), Espinhosa e 

Galo (2004) e Moreira et al. (2013) afirmam que nos últimos anos, as Redes Neurais Artificiais 

tiveram um crescente interesse e têm sido usadas com bastante êxito no gerenciamento de 

informações do ambiente e, em reconhecimento de padrões de imagens provenientes de 

Sensoriamento Remoto.  

 

2.6 Uso de aprendizagem profunda 

 

Aprendizagem Profunda permite construir conceitos complexos a partir de conceitos 

simples.  De acordo com GOODFELLOW et al. (2016), a quintessência de um modelo de 

aprendizagem profunda são os perceptrons multicamada (MLP). Um perceptron multicamada 

é apenas uma função matemática mapeando algum conjunto de valores de entrada para valores 

de saída. Essa função MLP é formada pela composição de outras funções mais simples e a 

aplicação de cada uma delas, proporciona uma nova representação da entrada. Suponha uma 

imagem representada como uma coleção de valores de pixels. A aprendizagem profunda faz 

uma série de mapeamentos simples aninhados, cada um descrito por uma camada diferente do 

modelo: a entrada é representada na camada visível, assim denominada porque contém as 

variáveis que podemos observar. Depois, uma série de camadas escondidas, seus valores não 

estão nos dados em si; em vez disso, o modelo deve determinar que conceitos são úteis para 

explicar as relações nos dados observados. Dados os pixels, a primeira camada visível pode 

facilmente detectar arestas, comparando a luminosidade dos pixels vizinhos. Dados os 

primeiros pixels escondidos, a segunda camada oculta pode facilmente procurar cantos e 

contornos alargados. A terceira camada oculta pode detectar partes inteiras de objetos 

específicos. Finalmente, esta descrição da imagem em termos das partes do objeto que contém, 

pode ser utilizada para reconhecer os objetos presentes na imagem. As redes com maior 

profundidade podem executar mais instruções em sequência. As instruções sequenciais são 

capazes de consultar os resultados das instruções anteriores.  Ainda de acordo com o autor, não 
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existe consenso sobre a profundidade que um modelo requer para se qualificar como 

“profundo”.  

A aprendizagem profunda tem sido utilizada com sucesso em aplicações comerciais 

desde os anos 90, mas era frequentemente considerada como sendo mais uma arte do que uma 

tecnologia, algo que só um especialista poderia utilizar. Os algoritmos de aprendizagem que 

atingem atualmente o desempenho humano em tarefas complexas são quase idênticos aos 

algoritmos utilizados para resolver toy problems nos anos 80, embora os modelos que treinamos 

com esses algoritmos sofreram alterações que simplificam a formação de arquiteturas muito 

profundas. A novidade é que hoje em dia podemos fornecer estes algoritmos com os recursos 

que necessitam para serem bem-sucedidos nessa era de Big-Data. Hoje os recursos 

computacionais podem executar modelos muito maiores. Redes maiores são capazes de 

alcançar maior precisão em tarefas mais complexas. A conectividade mais rápida da rede e a 

melhor infraestrutura de software de computação distribuída são uma das tendências mais 

importantes na história da aprendizagem profunda e espera-se que continue sendo para o futuro. 

Desde os anos 1980, a aprendizagem profunda tem melhorado na sua capacidade de 

proporcionar um reconhecimento e previsão precisos e tem sido consistentemente aplicada com 

sucesso a conjuntos de aplicações cada vez mais vasto, entre elas, a classificação de imagens.  

O maior concurso de reconhecimento de objetos é a ImageNet Large-Scale Visual 

Recognition Challenge – ILSVRC, realizado anualmente de 2010 a 2017. Em oito anos de 

competição houve redução do erro de classificação de imagens em 10 vezes e melhoria da 

precisão da detecção em 3 vezes. A ImageNet é um conjunto de dados com mais de 15 milhões 

de imagens rotuladas de alta resolução pertencentes a cerca de 22.000 categorias (KAGGLE, 

2022). Uma rede convolucional venceu esse desafio ImageNet com uma larga margem, 

baixando a taxa de erro dos 5 melhores lugares do estado da arte de 26,1% para 15,3%, o que 

significa que a rede convolucional produz uma lista classificada de categorias possíveis para 

cada imagem, e acertou para todos os exemplos de teste, exceto 15,3%. Desde então, estes 

concursos são consistentemente ganhos por redes convolucionais profundas e os avanços 

fizeram baixar a última taxa de erro dos 5 primeiros lugares neste teste para 3,6%. 

(GOODFELLOW et al., 2016).  

 

2.7 Uso de redes convolucionais 

 

Integrando a Aprendizagem Profunda, estão as Redes Neurais Convolucionais – CNNs. 

São um tipo especializado de rede neural para o processamento de dados, como séries 
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temporais, recolhendo amostras a intervalos regulares de tempo e dados de imagem. As redes 

convolucionais têm sido extremamente bem-sucedidas em aplicações práticas. O nome “rede 

neural convolucional” indica que a rede emprega uma operação matemática chamada 

“convolução”. A convolução é um tipo especializado de operação linear. Redes neurais 

convolucionais são redes neurais que utilizam a convolução em vez da multiplicação geral da 

matriz em pelo menos uma das suas camadas. 

A convolução alavanca três ideias importantes que podem ajudar a melhorar um sistema 

de aprendizagem de máquina: interações esparsas, partilha de parâmetros e variantes. Além 

disso, a convolução proporciona um meio de trabalhar com produções de dimensão variável. 

Ao processar uma imagem de entrada, ela pode ter milhares ou milhões de pixels, mas podemos 

detectar características pequenas e significativas, tais como bordas com núcleos que ocupam 

apenas dezenas ou centenas de pixels. Isto significa que precisamos armazenar menos 

parâmetros, o que reduz os requisitos de memória do modelo e melhora sua eficiência. Significa 

também que o cálculo da saída requer menos operações. A partilha de parâmetros permite 

utilizar o mesmo parâmetro para mais de uma função no modelo. Em uma rede neural 

tradicional, cada elemento da matriz de peso é utilizado exatamente uma vez quando se calcula 

a saída de uma camada. Na rede neural convolucional, cada membro do núcleo é utilizado em 

cada posição da entrada. A partilha de parâmetros utilizada pela operação de convolução 

significa que em vez de aprendermos um conjunto separado de parâmetros para cada local, 

aprendemos apenas um conjunto.  

Tipicamente, a parte mais dispendiosa da formação convolucional em rede é aprender 

as características. A camada de saída é normalmente relativamente barata devido ao número 

reduzido de características fornecidas como entrada para esta camada depois de passar por 

várias camadas de pooling. As camadas de pooling são utilizadas para simplificar as 

informações na saída da camada convolucional. Ao realizar um treinamento supervisionado 

com gradiente, cada passo de gradiente requer uma série completa de propagação para frente e 

para trás através de toda a rede. Uma forma de reduzir o custo da formação de redes de 

convolução é utilizar características que não são treinadas numa forma supervisionada. Hoje 

em dia, a maioria das redes convolucionais são treinadas de forma puramente supervisionada, 

usando uma propagação completa para a frente e para trás, através da rede de centros em cada 

interação de treino.  

Embora as redes convolucionais tenham sido guiadas por muitos outros caminhos, 

alguns dos princípios chave de concepção de redes neurais foram extraídos da neurociência. A 

história das redes convolucionais começa com experiências neurocientíficas muito antes dos 
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modelos computacionais relevantes terem sido desenvolvidos. Redes Convolucionais têm 

desempenhado um papel importante na história do Aprendizado Profundo. São um exemplo 

chave de uma aplicação bem-sucedida de conhecimentos obtidos através do estudo do cérebro 

e aplicações de aprendizagem de máquina (GOODFELLOW et. al, 2016). 

Uma família de modelos de rede neural, denominada EfficientNet, alcançam mais 

precisão e eficiência do que as Redes Neurais Convolucionais anteriores. Ao introduzir uma 

forma heurística de dimensionar o modelo, a EfficientNet fornece uma família de modelos (B0 

a B7) que representa uma boa combinação de eficiência e precisão em uma variedade de escalas. 

(TAN e LE, 2020).  

 

2.8 Uso de sensoriamento remoto 

 

Sensoriamento remoto é a ciência que possibilita a aquisição de informações (espectral, 

espacial, temporal) de objetos materiais sem a necessidade de contato físico com o objeto de 

investigação. Nesse contexto, o uso das técnicas de sensoriamento remoto torna-se 

indispensável, sobretudo devido à extensão territorial da região, dificuldades de acesso e custos 

elevados para realização de trabalhos de campo (GONÇALVES et. al, 2016).  

Além das imagens de satélites, amplamente utilizadas, existem tecnologias como o 

LIDAR – Light Detection and Ranging, um sistema de sensoriamento remoto ativo que pode 

ser usado para mapear estruturas, incluindo altura da vegetação, densidade e outras 

características da região. Por ser um sistema ativo, o próprio sistema gera energia, no caso a luz 

que é emitida por meio de um laser. Esta luz viaja para o solo e atingem objetos como ramos 

de árvore. Parte da luz refletida desses objetos regressa ao sensor, onde é registrada. A 

quantidade de energia que regressa ao sensor é conhecida como "intensidade". Entre as 

possibilidades estão a medição de biomassa, através de um sensor de reflectância ótica, 

determinar o índice de reflectância espectral, índice de vegetação por diferença normalizado – 

NDVI ou da altura da planta (INPE, 2021). 

 

2.9 Índices de vegetação 

 

Uma quantidade de energia luminosa ao atingir a planta, é refletida, enquanto outra 

parte é absorvida. Uma planta saudável consegue absorver a luz visível através da clorofila, já 

a luz do infravermelho próximo – NIR, é refletida pela estrutura celular das folhas das plantas. 

O Índice de Vegetação por Diferença Normalizada - NDVI, é a diferença entre a banda 
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infravermelha e vermelha do sensor, sendo associado a produção de biomassa e ao vigor das 

plantas. O NDVI mede o quanto cada planta consegue emitir e gera um valor entre -1 e 1. Por 

meio do NDVI, torna-se possível analisar as condições da vegetação. As coberturas vegetais 

mais densas e vigorosas são indicadas por valores mais elevados de NDVI, valores menores 

representam uma vegetação moderada e vegetação rasteira (COLTRI et al., 2009). 

Encontra-se também na literatura a informação que para plantas de maior porte, com 

mais densidade no seu dossel, pode-se utilizar o índice Diferença Normalizada do Vermelho 

Limítrofe - NDRE. O NDRE não satura o mapa do mesmo modo que o NDVI e apresenta 

resultados em culturas mais densas e com maior produção de biomassa. Os índices espectrais 

como NDVI e o Índice de Vegetação Fotossintético - PRI, cooperam para a obtenção de outro 

índice, denominado Carbon Dioxide Flux - CO2Flux, que quantifica o sequestro de carbono, 

possibilitando o mapeamento da vegetação fotossinteticamente ativa em determinada área de 

estudo. Ressalta-se que o CO2Flux é proporcional ao fluxo de carbono e, dependente da 

integração entre o NDVI com o PRI, resultando nesse novo índice. O CO2Flux é eficiente para 

a modelagem do sequestro de carbono em diferentes ambientes, sendo visível uma 

proporcionalidade no sequestro e fluxo de carbono (COLTRI et al., 2009). 

O sequestro de carbono pela vegetação depende da integração do NDVI com PRI 

gerando um novo índice, o CO2Flux, desenvolvido com objetivo de mensurar o estoque de 

carbono em vegetação natural. O mapeamento da vegetação utilizando o NDVI permite estimar 

a biomassa da vegetação e consequentemente relacioná-la ao estoque de carbono. Em seguida 

gerado o PRI que mensura os pigmentos de carotenoides (entre eles a xantofila) da folhagem. 

Esses pigmentos indicam o quanto a luz fotossintética é eficiente ou a taxa armazenada de 

dióxido de carbono na folhagem. Ainda, de acordo com o autor, a mensuração do estoque de 

carbono em vegetação natural através do CO2Flux, mostra-se como uma possibilidade a nível 

exploratório, visto que medidas in loco devem ser adicionadas a essa análise preliminar. 

(COLTRI et al., 2009). 

 

2.10 Considerações finais 

 

Dessa forma, foram trazidos da literatura disponível, alguns estudos no sentido de 

contribuir para o desenvolvimento da presente pesquisa, que tem por objetivo treinar e validar 

um algoritmo que seja capaz de estimar o potencial de sequestro de carbono em uma 

determinada região e possa ser aplicado em outras regiões.  

 



23 
 

3 METODOLOGIA PROPOSTA E DESENVOLVIMENTO 

 

Para o desenvolvimento da aplicação de estimativa do potencial de sequestro de CO2, 

considerando os processos de Inteligência Artificial e Big Data, a base de dados (Data 

Warehouse) com os parâmetros fitossociológicos e georreferenciais dos indivíduos arbóreos foi 

preparada com base em arquivo de inventário, disponibilizados para essa finalidade. A partir 

do conjunto de dados com as amostras de espécies, subdivididas em 19 parcelas amostrais de 

áreas fixas, foram geradas as imagens coloridas divididas em classes. O conjunto de dados foi 

dividido em conjunto de treinamento e conjunto de testes. Para o experimento foram utilizadas 

uma rede neural convolucional CNN sequencial e uma rede EfficientNet, com a análise de 

imagens de satélite com coordenadas geográficas, geradas a partir do conjunto de dados e que 

foram transformadas para possibilitar a classificação por meio da análise de conjuntos de pixels. 

As imagens segmentadas em pequenos blocos, representam a quantidade de espécies existentes 

naquela determinada região, denominada de parcela, ilustradas na Figura 3.1. 

 

Figura 3.1 – Distribuição das espécies em parcelas amostrais 

 

Fonte: Elaboração própria (2022). 

 

Esses pequenos blocos foram apresentados para a rede neural, treinando-a para aprender sobre 

o potencial de sequestro de carbono existente naquela representação e a partir daí ser capaz de 

estimar esse potencial em outras regiões.  
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Dessa forma, o inventário utilizado na presente pesquisa, consiste em 54 famílias, 372 espécies 

nativas e 2433 indivíduos amostrados. As amostras estão distribuídas em 19 parcelas de 2500 

m2, amostrando uma área de 4,8 ha, equivalente a 9,2% da área total da reserva. Cada parcela 

possui 125 metros de comprimento e 20 metros de largura, alocadas entre intervalos de 75 

metros de distância. Foram determinadas a localização geográfica de todos os indivíduos 

arbóreos com Diâmetro à altura do peito - DAP maior a 10 cm. Foram utilizadas planilhas de 

campo para levantamento dos dados de localização geográfica (GPS). Esses dados foram 

utilizados para a elaboração de mapas, arquivos georreferenciados e banco de dados das árvores 

matrizes digitalizados em planilha eletrônica. Foram inventariadas as árvores com DAP mínimo 

de 10 cm (ou 30 cm de circunferência). Para o inventário que compõe esse Projeto de Pesquisa 

o erro amostral é < 10% (INSTITUTO SOKA AMAZÔNIA, 2021a). 

Entre os projetos do Instituto Soka Amazônia, instituição alvo desse Projeto de 

Pesquisa, está o plantio de 10.000 mudas em 5 anos, correspondente ao período entre 2020 e 

2025. De acordo com o cálculo do IPCC, onde cada árvore de clima tropical sequestra 312kg 

de CO2 até chegar aos 20 anos de vida, que resulta em: 

10.000 𝑥 312 = 3.120,00 tCO2 

Uma outra forma de estimar o sequestro de carbono, seria tomar como base a equação 

(2.2), considerando a área amostrada da reserva de 4,8 ha, em um horizonte de tempo de 20 

anos, onde FSC= Fator de sequestro de carbono (25,9942 tCO2/ha/20anos), que resulta em: 

𝑆 = 25,9942 𝑥 4,8 𝑥 20, que resulta em S = 2.495,44 tCO2 

3.1 Características da área de estudo 

 

O presente estudo tem como base, o conjunto de dados do Instituto Soka Amazônia, 

localizado no bairro Colônia Antônio Aleixo, município de Manaus, no estado do Amazonas, 

a área total possui 52,06 ha. A área está ilustrada na Figura 3.2. De acordo com o IBGE, 2007, 

as fitofisionomias dominantes na área de trabalho são Floresta ombrófila densa de terras baixas 

ou submontanas e Floresta ombrófila aberta, dominada por palmeiras de grande porte, de terras 

baixas ou submontanas. A floresta apresenta aspecto sempre verde e grande número de espécies 

arbóreas, arbustivas e herbáceas, geralmente distribuídas em três estratos bem distintos. A 

cobertura vegetal ombrófila tem dossel uniforme com uma altura média de 20 a 30 m e árvores 

emergentes ocasionais. O clima é do tipo tropical de monção – AM, com estação seca e estação 
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chuvosa definidas pelo regime dos ventos. O clima é quente e úmido praticamente todo o ano, 

com precipitação média mensal de 213,7mm e média anual 2565mm, temperatura média de 

26ºC e umidade média relativa do ar variando de 83% a 90%, com média anual de 87% 

(INSTITUTO SOKA AMAZÔNIA, 2021c). 

 

Figura 3.2 -  Imagem de satélite da área do Instituto Soka Amazônia 

 

Fonte: INPE (2022) 

 

3.2 Amostragem utilizada no estudo 

 

As amostras estão distribuídas em 19 parcelas de 2500m2, amostrando uma área de 4,8 

ha, equivalente a 9,2% da área total. Cada parcela possui 125 m de comprimento e 20 m de 

largura, alocadas entre intervalos de 75 m de distância. Foram determinadas a localização 

geográfica de todos os indivíduos arbóreos com DAP>10 cm.  O total da amostra no conjunto 

de dados é de 1222 indivíduos. 

Neste trabalho, espera-se que com a rotulação de um conjunto relativamente pequeno 

de indivíduos arbóreos, o algoritmo aprenda a caracterizar estes elementos e seja capaz de 

identificar padrões de acordo com características fitossociológicas, combinadas com imagens 

de satélite. A partir do conjunto de dados com as espécies, subdivididas em 19 parcelas 

amostrais, foram geradas as imagens em Red, Green, Blue - RGB. Posteriormente, o conjunto 
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de dados foi dividido em conjunto de treinamento e conjunto de testes. Para o experimento 

foram utilizadas uma rede neural convolucional CNN sequencial e uma rede EfficientNet, com 

a análise de imagens de satélite com coordenadas geográficas, geradas a partir do conjunto de 

dados, e que foram transformadas para possibilitar a classificação por meio da análise de 

conjuntos de pixels. As imagens segmentadas em pequenos blocos, representam a quantidade 

de espécies existentes naquela determinada região, denominada de parcela. Esses blocos são 

apresentados para a rede neural, que deverá aprender sobre o potencial de sequestro de carbono 

existente naquela representação e a partir daí ser capaz de estimar esse potencial em outras 

regiões. Dentre os resultados esperados, destacam-se: 

Conseguir identificar padrões dentro de uma área georreferenciada e com isso treinar e 

validar o algoritmo para aplicar em outra região.  A aplicação proposta deve ser capaz de 

estimar o potencial de sequestro de carbono (CO2) de uma determinada área, de acordo com 

características fitossociológicas e de imagens. 

 

3.3 Cálculo da biomassa 

 

De acordo com MARTINS (2004), o tipo de clima para utilização de uma equação 

alométrica é definido em função do índice pluviométrico da região. Índices menores que 

1.500mm a região é considerada seca. Índices entre 1.500 e 4.000mm a região é considerada 

úmida e para índices maiores que 4.000mm a região é considerada muito úmida. Para o escopo 

desta pesquisa, foi utiliza a equação para clima úmido, segundo Brown et al., (1989), ilustrada 

na equação (3.1). Sendo Y=Biomassa acima do solo em quilogramas e D=Diâmetro à altura do 

peito (cm2): 

 Y = 42,69 − 12,800(D) + 1,242(D2)  (3.1) 

 

Na utilização da equação (3.1), o valor obtido para a biomassa (Y) é dividido por mil 

para obter o resultado em toneladas. O valor em toneladas é então multiplicado por 0,5 para 

obter as toneladas de carbono, já que na bibliografia disponível, em média, a matéria vegetal 

contém 50% de carbono, uma vez que a água é removida (MacDicken, 1997 apud Martins). O 

valor obtido é então dividido pelo tamanho da parcela amostrada (em m2) para então obter o 

valor em tC/m2. Multiplicando esse valor por 10.000 m2, obtém-se finalmente o valor em tC/ha 

(MARTINS, 2004). Foram calculados os valores de biomassa para cada parcela amostrada. Os 

valores foram ilustrados na Figura 3.3 
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Figura 3.3 – Valores de biomassa em cada parcela 

 

 

3.4 Cálculo dos índices de vegetação 

 

Para fins do presente projeto de pesquisa, foram considerados os índices de vegetação 

NDVI e CO2Flux, calculados a partir das imagens de satélite. Em termos do sensor, considerou-

se inicialmente, utilizar o SENTINEL-2, com resolução espacial de 10 metros. No entanto, para 

possibilitar o recorte dos pixels das imagens, com a resolução de 10 metros, a área total do pixel 

cobriria uma extensão muito maior do que cada um dos pontos das coordenadas das amostras. 

Optou-se então por utilizar imagens do satélite CBERS4A com resolução espacial de 2 metros. 

Dessa forma, os pontos das coordenadas das amostras melhor se ajustariam à região dos pixels, 

possibilitando um recorte mais aproximado.  

Foram obtidas imagens de satélite referentes ao ano de 2016 (ano da realização do 

inventário). O pré-processamento e o processamento de imagens georreferenciadas, foram 

realizados com software QGIS e a linguagem python. O Sistema de Referência de Coordenadas 

- SRC utilizado foi o SIRGAS 2000 UTM 20S - EPSG 31980. No software QGIS, foram 

plotadas as informações das coordenadas geográficas dos indivíduos arbóreos, obtidos através 

do inventário florestal e suas respectivas biomassas, calculados a partir da equação alométrica, 

ilustrada na equação (3.1). O tratamento de Reflectância na Superfície - SR também foi 

realizado com uso do software QGIS e utilizado na geração dos índices de vegetação descritos 

na Tabela 1. Após a transformação dos NDs (Números Digitais) em valores de reflectância real, 

foram calculados os índices NDVI e PRI. Após o cálculo do PRI, foi calculado o SPRI. Os 

índices NDVI e PRI foram combinados para gerar o índice CO2Flux.  O cálculo do NDVI é 

dado pela razão entre a diferença das reflectâncias do infravermelho próximo e do vermelho, e 

a soma destas, conforme ilustrado na equação (3.2): 
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 NIR – RED / NIR + RED (3.2) 

 

O cálculo do PRI está ilustrado na equação (3.3): 

 

GREEN - BLUE / GREEN + BLUE (3.3) 

 

Como o resultado do PRI apresenta valores negativos, precisam ser reescalonados, originando 

o SPRI.  O cálculo do SPRI está ilustrado na equação (3.4):  

 

(PRI + 1) / 2 (3.4) 

 

O CO2Flux mede a eficiência do sequestro de carbono pela vegetação. O cálculo do CO2Flux 

está ilustrado na equação (3.5): 

 

NDVI + SPRI (3.5) 

 

Foram calculados os valores de NDVI para cada parcela amostrada. A figura 3.4 ilustra os 

valores de NDVI. 

 

Figura 3.4 – Valores de NDVI por parcela 

 

 

Foram calculados os valores de CO2Flux para cada parcela amostrada. A figura 3.5 ilustra os 

valores de CO2Flux. 

 



29 
 

Figura 3.5 – Valores de CO2Flux por parcela 

 

 

Dessa forma, foram considerados os índices de vegetação NDVI e CO2Flux. De acordo 

com COLTRI et al (2009), o CO2Flux foi desenvolvido com objetivo de mensurar o estoque 

de carbono em vegetação natural. O mapeamento da vegetação utilizando o NDVI permite 

estimar a biomassa da vegetação e consequentemente relacioná-la ao estoque de carbono.  

 

3.5 Treinamento da rede neural 

O fluxo para o treinamento consistiu em utilizar a técnica de aumento de dados para os 

dados de treinamento, gerando novas observações da mesma imagem com pequenas edições. 

Realizar a regressão utilizando um otimizador, comparar o resultado da EfficientNetB0 com 

uma CNN sequencial e com uma abordagem ingênua, considerando a média dos dados. 

Utilizando o software QGIS, foram plotados os pontos das coordenadas das amostras. 

A partir da camada de pontos, foi realizado um recorte dos pixels das imagens em RGB, o mais 

próximo possível dos pontos das amostras. Foram gerados os recortes das imagens no formato 

1 x 1 pixel para possibilitar o treinamento da rede neural, conforme ilustrado na Figura 3.6: 

 

Figura 3.6 – Recorte dos pixels das imagens em RGB 
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Devido ao desbalanceamento no número de observações em cada parcela, conforme 

ilustrado na Figura 3.7, como alternativa, optou-se por realizar a alteração no conjunto de dados 

com o uso de subamostragem (undersampling). Pelo fato da técnica de subamostragem, utilizar 

como referência a classe minoritária para obter o número de elementos para as demais classes, 

optou-se por remover os elementos da parcela 9, já que nessa parcela havia menos de 10 

elementos. Dessa forma, a parcela com o menor número de elementos passou a ser a parcela 5, 

com 38 elementos e que passou a ser a classe minoritária. Como resultado, o conjunto de dados 

com subamostragem, ficou com 684 elementos, sendo 38 elementos em cada classe. A nova 

distribuição com subamostragem está ilustrada na figura 3.8. 

 

Figura 3.7 – Distribuição dos dados no conjunto original 

 

Figura 3.8 – Distribuição dos dados com subamostragem 
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4 RESULTADOS E DISCUSSÃO 

 

No conjunto de dados, observa-se que os atributos NDVI e CO2Flux são os que possuem 

maior correlação entre si. A menor correlação está entre os atributos Biomassa e CO2Flux, 

ilustrados nas Figura 4.1 e 4.2. 

 

Figura 4.1 – Correlação de Spearman entre os atributos. 

 

 

Figura 4.2 – Maior correlação entre NDVI e CO2Flux e menor correlação entre Biomassa e 

CO2Flux  
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O intuito de calcular a biomassa e os índices de vegetação, descritos nas sessões 3.3 e 

3.4 respectivamente, foi obter valores de referência que pudessem ser comparados com os 

valores estimados pela rede neural. Os valores calculados para cada parcela com 

subamostragem, estão ilustrados na Tabela 4.1 

 

Tabela 4.1 - Biomassa x Índices de Vegetação com subamostragem 

 

Parcela Biomassa(tC/ha) NDVI CO2FLUX 

1 28.2124 

 

31.2370 

 

19.1097 

 

2 43.0249 

 

31.7606 

 

19.4999 

 

3 43.0029 

 

30.8028 

 

18.7339 

 

4 44.0852 

 

31.2718 

 

18.8133 

 

5 23.8247 

 

31.4165 

 

19.3651 

 

6 33.1333 

 

31.6877 

 

19.4679 

 

7 35.7861 

 

31.6212 

 

19.3456 

 

8 36.5977 

 

31.2644 

 

18.6279 

 

9 - 

 

- 

 

- 

 

10 45.4419 

 

31.6844 

 

18.7627 

 

11 31.4334 

 

30.8682 

 

18.5781 

 

12 58.3916 

 

31.2996 

 

18.8540 

 

13 38.0342 

 

31.5579 

 

19.2241 

 

14 37.4021 

 

31.6445 

 

19.3861 

 

15 48.0300 

 

31.8766 

 

19.2416 

 

16 33.5928 

 

31.9411 

 

19.2524 

 

17 103.4998 

 

31.4610 

 

18.9246 

 

18 110.7775 

 

31.7939 

 

18.8678 

 

19 58.5810 

 

32.3416 

 

19.6381 

 

 

O conjunto de dados foi dividido em treino, validação e teste, na proporção 70, 20, 10. Para 

avaliar a eficiência dos modelos, foram utilizadas: 

• Função de Perda (LOSS) 

• Erro Percentual Médio Absoluto (MAPE). 
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A Função de Perda e o Erro Percentual Médio Absoluto dos modelos CNN sequencial e 

EfficientNet foram comparados com a Média dos dados de treinamento. Foram avaliados três 

atributos alvos (targets): Biomassa, NDVI e CO2Flux. A descrição dos dados do treinamento 

está representada na tabela 4.2. 

 

Tabela 4.2 - Estatísticas Descritivas do Treinamento 

 

 Biomassa NDVI CO2Flux 

Contagem 478.0000 478.0000 478.0000 

Média 1.179846 

 

0.829937 

 

0.502597 

 
Desvio Padrão 1.325217 0.017737 

 

0.016280 

 
Mínimo 0.260280 0.743890 

 

0.437720 

 
25% 0.416731 

 

0.822080 

 

0.493050 

 
50% 0.659094 

 

0.830025 

 

0.504365 

 
75% 1.464796 

 

0.841200 

 

0.514340 

 
Máximo 9.216084 

 

0.871860 

 

0.546150 

 
 

A Tabelas 4.3 ilustra o resultado do teste no conjunto de dados com subamostragem 

para os atributos Biomassa, NDVI e CO2Flux.  

 

Tabela 4.3 – Desempenho dos modelos EfficienteNet e CNN sequencial 

 

                         % Erro Médio Absoluto-MAPE Função de Perda-LOSS 

Modelo Atributos Atributos 

- Biomassa NDVI CO2Flux Biomassa NDVI CO2Flux 

EfficientNet 47.9693 1.7465 2.8390 1.0155 0.0142 0.0141 

CNN 74.0516 40.3987 65.6392 1.2318 0.3354 0.3313 

Média dos  128.5309 2.0371 2.8450 1.0893 0.0165 0.0138 

 

Observa-se que para o atributo Biomassa, tanto o modelo EfficientNet quanto o modelo 

CNN sequencial alcançaram o Percentual de Erro Médio Absoluto-MAPE inferior ao da Média 

dos Dados, sendo que EfficientNet obteve o percentual de erro mais baixo, se comparado à CNN 

sequencial.  Na Função de Perda-Loss, apenas o modelo EfficientNet alcançou o resultado 

inferior ao da Média dos Dados. Esse resultado é interpretado como favorável, já que ambas 

EfficientNet e CNN sequencial, mostraram melhor desempenho do que a abordagem ingênua 

de simplesmente tomar a média dos dados como referência. 
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Para o atributo NDVI, apenas a EfficientNet alcançou o Percentual de Erro Médio 

Absoluto-MAPE inferior ao da Média dos Dados. A Função de Perda-Loss apenas no modelo 

EfficientNet foi menor do que a Média dos Dados. Esse resultado parece sugerir que a 

EfficientNet, alcança mais precisão e eficiência do que as Redes Neurais Convolucionais 

anteriores, como a CNN sequencial. 

Para o atributo CO2Flux, apenas a EfficientNet alcançou o Percentual de Erro Médio 

Absoluto-MAPE inferior ao da Média dos Dados. Porém para esse atributo, a Função de Perda 

no modelo EfficientNet foi ligeiramente maior do que a Média dos Dados. De toda forma, os 

resultados apresentados para o Percentual de Erro Médio Absoluto-MAPE e para a Função de 

Perda, para o atributo Biomassa, continuaram sendo melhores na EfficientNet do que na CNN 

sequencial. O gráfico de desempenho dos testes com o atributo Biomassa, NDVI e CO2Flux 

estão ilustrados na Figuras 4.3, 4.4 e 4.5, respectivamente.  

 

Figura 4.3 – Desempenho para o atributo Biomassa 

 

Figura 4.4 – Desempenho para o atributo NDVI  
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Figura 4.5 – Desempenho para o atributo CO2Flux 

 

 

As tabelas 4.4, 4.5, 4.6 e 4.7 descrevem as configurações das redes utilizadas no teste.  

 

Tabela 4.4 – Camadas do modelo CNN sequencial 

 
Camada(tipo) Neurônios Tam.Filtro Parâmetros Func.Ativação Tam.Entrada 

Convolucional 8 1,1 32 Relu 1,1,3 

Flatten - 8 0 - - 

Densa - 1 9 - - 

 

Tabela 4.5 – Configuração do modelo CNN sequencial 

 

Total de parâmetros Parâmetros treináveis Parâmetros não-treináveis 

41 41 0 

 

Tabela 4.6 – Configuração do modelo EfficientNet 

 

Total de parâmetros Parâmetros treináveis Parâmetros não-treináveis 

4,055,972 3,841 3,841 

 

Tabela 4.7 – Valores dos parâmetros utilizados para o treinamento das redes. 

 

 EfficientNet CNN Sequencial 

Quantidade de Épocas 20 20 

Tamanho do Batch 64 64 

Taxa de Aprendizagem 0.09 0.01 
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5 CONCLUSÃO 

 

Com base nos testes com o conjunto de dados, a EfficientNet mostrou melhor 

desempenho nos atributos Biomassa, NDVI e CO2Flux, se comparado à CNN sequencial. O 

teste ainda sugeriu que o atributo Biomassa foi o que obteve melhor resultado em comparação 

aos atributos NDVI e CO2Flux. Isso pode se dever ao fato de que o atributo Biomassa, foi 

calculado diretamente sobre os dados tabulares do conjunto de dados por meio da equação (3.1), 

resultando nos valores de biomassa para cada parcela amostrada. Já os atributos NDVI e 

CO2Flux não foram calculados diretamente sobre os dados tabulares. Eles são resultado de um 

processamento de recortes de imagens de satélite, que estão sujeitos a variação de precisão, 

como a dificuldade de aproximação dos pontos das coordenadas com o pixel das imagens, a 

resolução das imagens, ao tratamento de Reflectância, entre outras descritas em detalhes na 

sessão 3.4. Sendo assim, as causas da disparidade dos resultados entre os atributos Biomassa e 

os demais, NDVI e CO2Flux estariam na qualidade dos dados de imagem, e não 

necessariamente nas redes em si. Todavia, essa análise ficaria como sugestão para trabalhos 

futuros. 

Os resultados do treinamento da rede neural, mostraram que mesmo utilizando os 

recursos da rede pré-treinada EfficientNet, o Erro Percentual Médio Absoluto (MAPE) e a 

Função de Perda, ficaram elevados. Ainda assim, apresentaram melhor resultado do que a 

abordagem ingênua, de simplesmente tomar a média dos dados como referência. Possivelmente 

devido à pequena quantidade de dados disponíveis para o treinamento, especialmente de 

imagens.  

Quanto ao objetivo de conseguir identificar padrões dentro de uma área 

georreferenciada e com isso treinar e validar o algoritmo para aplicar em outra região e a 

proposta do algoritmo ser capaz de estimar o potencial de sequestro de carbono (CO2) de uma 

determinada área, de acordo com características fitossociológicas e de imagens, embora o 

estudo mostre a possibilidade de inferir as taxas de biomassa para novas imagens, existe a 

necessidade de aferir com maior precisão as taxas preditas, assim como aprimorar o uso dos 

índices de vegetação. À medida que mais imagens e com melhor resolução forem 

disponibilizadas para treinamento, essa técnica poderá ser melhorada. Em trabalhos futuros, se 

houver a possibilidade de utilizar imagens com maior resolução espacial, obtidas por meio de 

drones ou torres de observação, poderá trazer maior precisão aos estudos. 
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